

Integrated monitoring of vestibular function, air-sickness and spatial disorientation in the Swiss airforce

Denis Bron, MD Giovanni Bertolini, PhD

Swiss Airforce Aeromedical Center

2

risks for subtle/unrecognized form (e.g. sopite syndrome¹)

- impaired performance (e.g. +10% wrong decision)

1 – **Sopite syndrome**: form of motion sickness with no evident signs (nausea or vomit) but **causing** <u>unrecognized</u> **profound drowsiness and performance loss**. It is recognized as cause of accident.

In-flight motion perception ightarrow disorienting visuo-vestibular stimuli

Effects:

U

Spatial disorientation, motion sickness, sopite syndrome

Problem definition

- aberrant eye reflexes (e.g. incorrectargeting, blurred vision)
- cognitive impairment (e.g. +10% ognitive errors, slower reaction time)

Consequences:

direct high-risk – fatal meuvers

22-25/03/22 RAMS/NATO

Spatial disorientation (SD)

- Spatial disorientation is a condition elicited by an "unnatural/unknown" selfmotion stimuli (including illusion of motion)
- Incapacity to determine correctly
 - position and orientation in space (3DoF in a given reference frame)
 - self-motion status (6 DoF in physics perceptually more)
- Disorientation is not simply confusion!
 - A possible interpretation of the sensory inputs might be present, but wrong (e.g. illusion in aviation)

Motion sickness (MS)

- Motion sickness (Air-) is a syndrome elicited by sustained "unnatural/unknown" self-motion stimuli (including illusion of motion)
- Motion sickness is elicited by <u>a "conflict"</u> among different motion-sensitive input
- Motion sickness is more than nausea and vomiting!
 - Yawning, sweating, deregulation of body temperature, headache, bradycardia, transient cognitive impairment, performance drop, slower reaction time, apathy

Incidence and conditions - 1/2

They occurrence is hard to predict, but there are known triggering conditions

22-25/03/22

RAMS/NATO

- External factor: Atmospheric conditions, flight maneuvers, use of HUD/NVG,...
- Internal factors: fatigue, distractors, crew-coordination, experience, training...

Preliminary Survey of Spatial Disorientation in UK Military Pilots and Navigators

Dr Sharon R Holmes, Mr Alex Bunting, Miss Sam Bostock

Rm G030, A50 Centre for Human Sciences, QinetiQ Ltd Cody Technology Park, Ively Rd Farnborough, Hampshire, GU14 0LX, UK

Col Lex Brown

RAF Centre of Aviation Medicine Henlow, Bedfordshire, SG16 6DN, UK

Lt Col Keith Hiatt and Col Malcolm Braithwaite

Headquarters Director Army Aviation Middle Wallop, Stockbridge Hampshire, S020 8DY, UK

Lt Col Mike Harrigan

Headquarters Joint Helicopter Command Commander (JHC), Erskine Barracks Wilton, Salisbury, Wiltshire, SP2 0AG, UK **USAF Spatial Disorientation Survey**

Wg Cdr Roger S.J. Matthews Aviation Medicine Training Wing Centre of Aviation Medicine RAF Henlow Bedfordshire SG16 6DN United Kingdom Dr Fred Previc Northrup Grumman Information Technology 4241 Woodcock Drive, Ste B-100 San Antonio Texas 78228 USA

Mr Alex Bunting QinetiQ Cody Technology Park Ively Road Farnborough GU14 0LX

Spatial Disorientation Survey Among Military Pilots

Helena J.M. Pennings; Esther A.P.B. Oprins; Hans Wittenberg; Mark M.J. Houben; Eric L. Groen

- BACKGROUND: Spatial disorientation (SD) remains a significant cause of accidents and near accidents. A variety of training methods have been used to assist pilots to anticipate the SD problem. The value of such training in the prevention of disorientation has been difficult to asses.
- METHODS: To study transfer of SD awareness training, we related reported incidents to the content and frequency of SD awareness training received. The questionnaire was completed by 368 out of 495 pilots; 189 currently flying fixed-wing, and 150 flying rotary-wing aircraft. On average, their age was 38, and they had 2466 flight hours on-type.

5

RESULTS: Respondents gave high ratings for the importance of SD training and their awareness of SD, the latter being one of the

Incidence and conditions - 2/2

- Post-flight analysis of accidents/episode is influenced by pilot career stage
- in trainee pilots:
 - > due to experience/adaptation to new flight conditions
- in expert pilots:
 - may be considered consequent to change in the visuo-vestibular processing due to adaptation, aging or acute vestibular insults

22-25/03/22 RAMS/NATO

Broach et al. 2003, Pilot Age and Accident Rates Report 3, Civil Aeromedical Institute Oklahoma City

Swiss Air Force MS/SD management

The Swiss Air Force manages these episodes with a three steps plan:

- 1. **STEP 1:** Clinical assessment of neuro-vestibular function
- 2. **STEP 2:** Assessment of sensitivity to vestibular and visual stimulation and non-clinical vestibular assessment (e.g VOR/OKAN time constant);
- **3. STEP 3:** Visual/vestibular desensitization procedures

U

22-25/03/22 RAMS/NATO

STEP 1: Clinical assessment of neuro-vestibular function

semicircular canals

- video head-impulse test
- caloric ear irrigation test

angular acceleration

• dynamic visual acuity

Clinical assessment (Step 1) - 1/3

Obrist et al. 2010

otolith organs

- subjective visual vertical
- fundus photography
- cervical vestibular-evoked

myogenic potentials (cVEMPs)

• ocular vestibular-evoked myogenic

potentials (oVEMPs)

linear acceleration

8

Clinical assessment (Step 1) - 2/3

STEP 1: Clinical assessment of neuro-vestibular function

semicircular canals

- video head-impulse test
- caloric ear irrigation test
- dynamic visual acuity

angular acceleration

- not invasive
- measures canal-specific gains of the vestibulo-ocular reflex RALP (VOR)

В

 detects covert catch-up saccades

<u>eye: video</u> <u>head: accelerometer</u> Lateral LARP

Swiss Airforce Aeromedical Center 22-25/03/22 RAMS/NATO

MacDougall, Weber et al. 2008-2013

9

Clinical assessment (Step 1) - 2/3

STEP 1: Clinical assessment of neuro-vestibular function

semicircular canals

- video head-impulse test
- caloric ear irrigation test
- dynamic visual acuity

COWS Method:

- Cold Other side
 Warm Same side
 Eye recording
- Video Oculography

angular acceleration

Clinical assessment (Step 1) - 2/3

STEP 1: Clinical assessment of neuro-vestibular function

semicircular canals

- video head-impulse test
- caloric ear irrigation test
- dynamic visual acuity

angular acceleration

Recognition of the symbols (visual acuity) during head impulses
 (> 150º/s, 100 ms)

 Functional test of vestibulo-ocular reflex

> 22-25/03/22 RAMS/NATO

Vital et al. 2010

Swiss Airforce Aeromedical Center

Complementary to head impulse test

Clinical assessment (Step 1) - 3/3

STEP 1: Clinical assessment of neuro-vestibular function

- Assessment of Perceived vs true earth-vertical
- Aligning a luminous line with the perceived earthvertical in otherwise complete darkness

RED = right ear down

otolith organs

- subjective visual vertical
- fundus photography
- cervical vestibular-evoked

myogenic potentials (cVEMPs)

ocular vestibular-evoked myogenic

potentials (oVEMPs)

linear acceleration

Clinical assessment (Step 1) - 3/3

STEP 1: Clinical assessment of neuro-vestibular function

otolith organs

- subjective visual vertical
- fundus photography
- cervical vestibular-evoked

myogenic potentials (cVEMPs)

ocular vestibular-evoked myogenic

potentials (oVEMPs)

linear acceleration

Clinical assessment (Step 1) - 3/3

STEP 1: Clinical assessment of neuro-vestibular function

22-25/03/22 RAMS/NATO

Assessment of MS sensitivity

STEP 2: Assessment of sensitivity to vestibular and visual stimulation and nonclinical vestibular assessment (e.g VOR/OKAN time constant);

Turntable test with video-oculography:

- 1. Coriolis and Pseudo-coriolis stress-test
- 2. Vestibulo-ocular reflex (VOR)
 - Chair rotation in darkness (60°/s)
- 3. Optokinetik after nystagmus (OKAN)
 - Chair stays steady. Drum rotation in light (60°/s 30 s) and then sudden darkness

STEP 2: 1) Coriolis and pseudo Coriolis stress test

Up to 4 repetition of 4 head tilts (with 10 sec break between tilts)

- During rotation at 90°/s in darkness (Coriolis)
- During visual rotation (drum rotation/chair steady) at 60°/s in light

Motion sickness score (0-20) after each series of 4 head tilts

VOR Assessment - 1/2

STEP 2: 2) Velocity step response of vestibulo-ocular reflex (VOR)

STEP 2: 2) Velocity step response of vestibulo-ocular reflex (VOR)

RAMS/NATO

OKAN Assessment - 1/3

STEP 2: 3) Optokinetic nystagmus and afternystagmus (OKN/OKAN)

- A full-field rotation of the visual field induce a nystagmus.
- Eye velocity decays slowly when switching the light off
- Longer time constant of decays is related to visual induced MS

(Guo et al. 2011, Bertolini et al. 2021)

STEP 2: 3) Optokinetic nystagmus and afternystagmus (OKN/OKAN)

STEP 2: 3) Optokinetic nystagmus and afternystagmus (OKN/OKAN)

Normal OKAN response

STEP 3: Visual/vestibular desensitization procedures Head tilts while rotating in darkness or with visual rotations

- 5 days; 2x day, 1 hour
- Increments of head tilt size and speed from 6 deg/s to 150 deg/s
- 10 repetitions of 4 tilts and MS score lower than subjective threshold
 → Step up

Ū PLAN: New integrated strategy - 1/3

A new strategy for management of airsickness and spatial disorientation

RAMS/NATO

PLAN: New integrated strategy - 2/3

A **personal** visuo-vestibular and oculomotor performance profile integrating:

objective clinical data & SD/MS survey for follow-up

Aim is to support developments in each career phases, not to stop them

- 1. A personal visuo-vestibular profile is created in after recruiting to offer
 - case-specific desensitization when needed to avoid career slow-down
 - baseline data and reference values for visuo-vestibular and oculomotor tests
- 2. A monitoring plan that keep the the profile up-to-date
 - to **preventively** recognize emerging risk due to e.g. age, exposure...
 - to respond **objectively** to the pilots' requests, worries or needs
 - to optimize **context-/pilot-specific** assignments (e.g. in relation of with tech/aircraft type, flying condition) and reducing risks.

PLAN: New integrated strategy - 3/3

A **global database** of visuo-vestibular and oculomotor data integrating:

objective clinical data & SD/MS survey and incidence data

Aim is provide data to researchers and decision makers regarding

- 1. evidence-based risk factors associated with
 - introduction of **new technology** and their dependency on **human factors**
 - repetitive exposure to flight conditions, adaptation, aging in relation to objective changes in clinical data
- 2. improvements of selection criteria or trainings
 - to **preventively** control risk due SD
 - to reduce cost due to e.g. career breaks, later desensitization,...

University of Zurich -

Department of Neurology

University of Applied Science and Art – Institute of Optometry

Swiss Space Travel and AiR Sickness Lab

University of Applied Sciences and Arts Northwestern Switzerland School of Engineering

- Frequency of testing
 - age dependent, exposure dependent,...
 - minimal interference in duties...

- Global findings vs individual findings...
 - Proper interpretation, spurious findings

- Use of outcomes...
 - Stress of exclusion, judgment...

Thank you for your attention!

24